ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΝΑΝΟΧΗΜΕΙΑΣ

- Materials self-assembly
- "Large" and "small" nanomaterials
- Molecular vs. materials self-assembly
- Directing self-assembly
- Genealogy of self-assembling materials
- Porous solids
- Biomaterials-Lessons to be learned
- 2-D assemblies
- SAM's and soft lithography
- "Clever" clusters
- Nanowires
- Nanocolloids

Nanochemistry : A Chemical Approach to Nanomaterials by G. Ozin, A. Arsenault Royal Society of Chemistry; First edition (November 22, 2005)

Factors that must be considered when approaching the self-assembly of a nanoscale system

Dividing matter to the nanoparticle and nanoporous state

A hypothetical hierarchical system, exhibiting distinct building rules at different length scales

3D (a) and two-dimensional (b) structures formed by self-assembly of tetrahedral and trigonal molecular building blocks

Self-assembly of trigonal molecular building blocks with tetrahedrally shaped functional groups may lead to the formationof three-dimensional open hexagonal networks (c).

Packing diagrams of three-dimensional hexagonal structures of molecular complexes of amines and phosphonates

Jean-Marie Lehn, pioneer of supramolecular chemistry

Image of synthetic morphologies produced by Pieter Harting, hand-drawn by himself in 1872

VERBAUD, D. KON AKAD APD. BAT. D. XIII.

Sketch of a radiolarian discovered by Ernst Haeckel

On growth and form, the ground-breaking text by D.W. Thompson

D'Arcy Wentworth Thompson

A zeolite's crystalline aluminosilicate framework assembles around an organic template molecule providing pores after its removal.

Porous solids formed by assembly of Zn tetrahedra and dicarboxylates can have very large accessible surface areas

The chiton, left, a primivite marine mollusk.

Chiton radula, right, composed of biomineralized iron oxide, are hard enough to scrape algae-covered rocks

Synthetic morphology resembling biomineralized systems

«ΦΥΣΙΚΑ» ΚΟΧΥΛΙΑ

«ΤΕΧΝΗΤΑ» ΚΟΧΥΛΙΑ

Langmuir–Blodgett films are formed through the repetitive transfer of amphiphile monolayers, left

Inorganic LB-like films can be synthesized from diphosphonates and metal ions, right

Iterative formation of layer-by-layer electrostatic multilayers by alternately dipping in solutions of polycations and polyanions

Square drops of water through soft lithography

Solutions of CdSe nanoparticles of different sizes under UV light, Showing size-dependent emission properties

Ultra-small pitch wire arrays made by superlattice templating

Hierarchically ordered oxide through a combination of microchannel, microsphere, and block-copolymer templating

Microstructure of siliceous diatom, Cymbela Mexicana, observed by microscopy

